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Mahalanobis vs. SVD vs. Auto-Encoder | Data Normalization
The normalization method for the data can have a significant effect on the performance. 
5 versions of normalization  were tried on this data –

- No normalization
- Bounding each channel to 0 to 1 range
- Standardizing each channel (subtract mean, divide by standard deviation)
- Standardize then bound in 0 to 1 range
- Standardizing then bound in -1 to +1 range
- sklearn’s Robust Scaler (medians & quartiles)
- PCA with Whitening

Each statistic (i.e. channel means, channel standard deviations, minima, maxima) were drawn from the undamaged 
training set used in each fold of the 9-fold cross validation.

Using standardizing normalization on each channel 
(subtract mean, divide by standard deviation), 
without bounding channels to a range. 

[Comparison_M_S_AE_fold_0_Robust_Scaler.png]

Using standardizing normalization on each 
channel, and also bounding to the range -1 to +1. 

[Comparison_M_S_AE_fold_0_Undamaged_
Standardize_and_m1_p1.png]

These use the same technique 
(difference in singular values from 
SVD), just different normalization.



Bounding each channel to 0-1 range.
Comparison_M_S_AE_fold_0_Just_01.png

No normalization.
Comparison_M_S_AE_fold_0_No_Normalization.png

The auto-encoder fails here: this may be because 
the activation function on the final layer is a 
sigmoid, which is asymptotically bound to the 
range [-1, 1].

sklearn Robust Scaler
Comparison_M_S_AE_fold_0_Robust_Scaler.png
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Standardizing Each Channel
Comparison_M_S_AE_fold_0_Undamaged_Standardize.p
ng

(Subtracting each channel’s mean, and 
then dividing by each channel’s standard 
deviation)

Standardized & Bounded to [0, 1].
Comparison_M_S_AE_fold_0_Undamaged_Standardize_
and_01.png

Subtracting each channel’s mean, and, dividing 
by each channel’s standard deviation, and then 
forcing each channel into the range 0, 1. This 
sets the mean at 0.5 and the training data has 
no negative values)

Standardized & Bounded to [-0.5, +0.5].
Comparison_M_S_AE_fold_0_Undamaged_Standardize_
and_mhalf_phalf.png

Same as above, but forcing each channel into 
the range 0, 1. This sets the mean at 0, and the 
training data has some negative values: this 
appears to work better for the SVD detection 
method. Same results if [-1, +1] is used.

The auto-encoder uses reLUs internally (whose 
nonlinearities occur at (0, 0).
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PCA (With Whitening)

The principal components are multiplied 
by the square root of the number of 
samples and divided by their 
corresponding singular value. 

In short the data has been projected into 
an orthogonal basis, and the covariance 
matrix for the re-projected undamaged 
training data is the identity. 

This doesn’t affect Mahalanobis because 
PCA is ZCA (Mahalanobis), save rotation: 
https://stats.stackexchange.com/questions/1174
27/what-is-the-difference-between-zca-
whitening-and-pca-whitening

https://stats.stackexchange.com/questions/1665
25/is-mahalanobis-distance-equivalent-to-the-
euclidean-one-on-the-pca-rotated-data

Mahalanobis vs. SVD vs. Auto-Encoder | Data Normalization

PCA (No Whitening)

The data are projected into an 
orthogonal basis, but the components 
are not scaled based on their singular 
values.

“A model with large weight values is 
often unstable, meaning that it may 
suffer from poor performance during 
learning and sensitivity to input values 
resulting in higher generalization error.”

https://machinelearningmastery.com/ho
w-to-improve-neural-network-stability-
and-modeling-performance-with-data-
scaling/

The Mahalanobis ROC curves are unaffected by the normalization technique used, but for 
both the SVD-based classifier and the auto-encoder based classifier, Using PCA whitening 
as a form of normalizing/pre-processing yields the best results (largest difference in true-
positive and false-positive rates for a given threshold)

https://stats.stackexchange.com/questions/117427/what-is-the-difference-between-zca-whitening-and-pca-whitening
https://stats.stackexchange.com/questions/166525/is-mahalanobis-distance-equivalent-to-the-euclidean-one-on-the-pca-rotated-data
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/


Fig. 9 from ‘Embedded Sensing System for Condition Monitoring 
of Hydraulic Actuators’ shows the excess load being separated 
by the pressure differential.

The pressure differential helps separate the ELoad cases for this 
dataset too. The sum of the variance in the pressures is helpful in 
separating some Eload1200 cases from the Baseline.

The axes were acquired by examining the top components of PCA for 
the dataset (just Eload and Baseline) and maximizing the number of 
zeroed entries.

Axes for ELoad



Higher Cycles Data

Both graphs show the same data. The graph on the left colors by the number of cycles, and the graph on the right 
colors by the severity of the damage. 

The left graphs suggests that over many actuation cycles that both the sum variances in pressure and the sum of 
the difference between the pressures increases.

The graphs below use the data collected after 28 – 200K cycles.



Mahalanobis Distance on Higher Cycles Data

All 9 folds have very good ROC curves (most have 0% false positives and 100% true positives). Fold 3 has the 
most trouble. Interestingly, the outlier points (shown on right) are never misclassified with respect to damage.

For Fold 1, the false positive is a fairly normal looking point – no features on it are more than 1 
standard deviation, it’s presumably just because a large number of its features deviate from the 
mean a moderate amount.

For Fold 3, the false positives have very unusual ‘Diff_Temp_Var’ values (>10 STDVs from mean) 
For Fold 7, the false positive has a very unusual accelerometer variances (>20 STDVs from mean)



Fold 0: Test acc: 100.000% | Train acc: 100.000%
Fold 1: Test acc: 100.000% | Train acc: 99.917%
Fold 2: Test acc: 99.834% | Train acc: 100.000%
Fold 3: Test acc: 99.834% | Train acc: 99.834%
Fold 4: Test acc: 100.000% | Train acc: 100.000%
Fold 5: Test acc: 99.917% | Train acc: 100.000%
Fold 6: Test acc: 100.000% | Train acc: 100.000%
Fold 7: Test acc: 99.917% | Train acc: 100.000%
Fold 8: Test acc: 99.086% | Train acc: 99.418%

Mahalanobis Distance on Higher Cycles Data

Performance
At worst, the Mahalanobis distance had 99.83% accuracy in determining 
whether a given sample was damaged or not. (This is approximately 1-2 
misclassifications per thousand)

Training/Testing Procedure
Using 9-fold validation, 8/9ths of the undamaged data is used to 
construct the inverse covariance matrix and mean vector used for 
Mahalanobis.

Half of the remaining 1/9th of the undamaged data and the damaged data 
is used to determine the threshold for the Mahalanobis curve (i.e. the 
ideal threshold on the ROC curve) to optimize accuracy, and the 
remaining half is used to test the Mahalanobis damage classifier.

Why not just use the ROC curve?

The additional step of using half the 
testing data to determine the threshold 
(from the ROC curve) and the remaining 
half to test the accuracy is a better 
representation of how accurate the 
technique really is.

The ROC curve can be used to select the 
threshold for a classifier – but re-using 
that threshold on the data from which it 
was drawn does not tell you anything 
about how well it will perform on 
unseen data.
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